翻訳と辞書 |
Almeida–Pineda recurrent backpropagation : ウィキペディア英語版 | Almeida–Pineda recurrent backpropagation Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning. A recurrent neural network for this algorithm consists of some input units, some output units and eventually some hidden units. For a given set of (input, target) states, the network is trained to settle into a stable activation state with the output units in the target state, based on a given input state clamped on the input units.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Almeida–Pineda recurrent backpropagation」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|